Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Circulation ; 146(12): 892-906, 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2089002

ABSTRACT

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a prothrombotic state, but long-term effects of COVID-19 on incidence of vascular diseases are unclear. METHODS: We studied vascular diseases after COVID-19 diagnosis in population-wide anonymized linked English and Welsh electronic health records from January 1 to December 7, 2020. We estimated adjusted hazard ratios comparing the incidence of arterial thromboses and venous thromboembolic events (VTEs) after diagnosis of COVID-19 with the incidence in people without a COVID-19 diagnosis. We conducted subgroup analyses by COVID-19 severity, demographic characteristics, and previous history. RESULTS: Among 48 million adults, 125 985 were hospitalized and 1 319 789 were not hospitalized within 28 days of COVID-19 diagnosis. In England, there were 260 279 first arterial thromboses and 59 421 first VTEs during 41.6 million person-years of follow-up. Adjusted hazard ratios for first arterial thrombosis after COVID-19 diagnosis compared with no COVID-19 diagnosis declined from 21.7 (95% CI, 21.0-22.4) in week 1 after COVID-19 diagnosis to 1.34 (95% CI, 1.21-1.48) during weeks 27 to 49. Adjusted hazard ratios for first VTE after COVID-19 diagnosis declined from 33.2 (95% CI, 31.3-35.2) in week 1 to 1.80 (95% CI, 1.50-2.17) during weeks 27 to 49. Adjusted hazard ratios were higher, for longer after diagnosis, after hospitalized versus nonhospitalized COVID-19, among Black or Asian versus White people, and among people without versus with a previous event. The estimated whole-population increases in risk of arterial thromboses and VTEs 49 weeks after COVID-19 diagnosis were 0.5% and 0.25%, respectively, corresponding to 7200 and 3500 additional events, respectively, after 1.4 million COVID-19 diagnoses. CONCLUSIONS: High relative incidence of vascular events soon after COVID-19 diagnosis declines more rapidly for arterial thromboses than VTEs. However, incidence remains elevated up to 49 weeks after COVID-19 diagnosis. These results support policies to prevent severe COVID-19 by means of COVID-19 vaccines, early review after discharge, risk factor control, and use of secondary preventive agents in high-risk patients.


Subject(s)
COVID-19 , Thrombosis , Vascular Diseases , Venous Thromboembolism , Venous Thrombosis , Adult , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines , Cohort Studies , Humans , SARS-CoV-2 , Thrombosis/complications , Thrombosis/epidemiology , Vascular Diseases/complications , Venous Thromboembolism/etiology , Venous Thrombosis/epidemiology , Wales/epidemiology
2.
PLoS Med ; 19(2): e1003926, 2022 02.
Article in English | MEDLINE | ID: covidwho-1699720

ABSTRACT

BACKGROUND: Thromboses in unusual locations after the Coronavirus Disease 2019 (COVID-19) vaccine ChAdOx1-S have been reported, although their frequency with vaccines of different types is uncertain at a population level. The aim of this study was to estimate the population-level risks of hospitalised thrombocytopenia and major arterial and venous thromboses after COVID-19 vaccination. METHODS AND FINDINGS: In this whole-population cohort study, we analysed linked electronic health records from adults living in England, from 8 December 2020 to 18 March 2021. We estimated incidence rates and hazard ratios (HRs) for major arterial, venous, and thrombocytopenic outcomes 1 to 28 and >28 days after first vaccination dose for ChAdOx1-S and BNT162b2 vaccines. Analyses were performed separately for ages <70 and ≥70 years and adjusted for age, age2, sex, ethnicity, and deprivation. We also prespecified adjustment for anticoagulant medication, combined oral contraceptive medication, hormone replacement therapy medication, history of pulmonary embolism or deep vein thrombosis, and history of coronavirus infection in analyses of venous thrombosis; and diabetes, hypertension, smoking, antiplatelet medication, blood pressure lowering medication, lipid lowering medication, anticoagulant medication, history of stroke, and history of myocardial infarction in analyses of arterial thromboses. We selected further covariates with backward selection. Of 46 million adults, 23 million (51%) were women; 39 million (84%) were <70; and 3.7 million (8.1%) Asian or Asian British, 1.6 million (3.5%) Black or Black British, 36 million (79%) White, 0.7 million (1.5%) mixed ethnicity, and 1.5 million (3.2%) were of another ethnicity. Approximately 21 million (46%) adults had their first vaccination between 8 December 2020 and 18 March 2021. The crude incidence rates (per 100,000 person-years) of all venous events were as follows: prevaccination, 140 [95% confidence interval (CI): 138 to 142]; ≤28 days post-ChAdOx1-S, 294 (281 to 307); >28 days post-ChAdOx1-S, 359 (338 to 382), ≤28 days post-BNT162b2-S, 241 (229 to 253); >28 days post-BNT162b2-S 277 (263 to 291). The crude incidence rates (per 100,000 person-years) of all arterial events were as follows: prevaccination, 546 (95% CI: 541 to 555); ≤28 days post-ChAdOx1-S, 1,211 (1,185 to 1,237); >28 days post-ChAdOx1-S, 1678 (1,630 to 1,726), ≤28 days post-BNT162b2-S, 1,242 (1,214 to 1,269); >28 days post-BNT162b2-S, 1,539 (1,507 to 1,572). Adjusted HRs (aHRs) 1 to 28 days after ChAdOx1-S, compared with unvaccinated rates, at ages <70 and ≥70 years, respectively, were 0.97 (95% CI: 0.90 to 1.05) and 0.58 (0.53 to 0.63) for venous thromboses, and 0.90 (0.86 to 0.95) and 0.76 (0.73 to 0.79) for arterial thromboses. Corresponding aHRs for BNT162b2 were 0.81 (0.74 to 0.88) and 0.57 (0.53 to 0.62) for venous thromboses, and 0.94 (0.90 to 0.99) and 0.72 (0.70 to 0.75) for arterial thromboses. aHRs for thrombotic events were higher at younger ages for venous thromboses after ChAdOx1-S, and for arterial thromboses after both vaccines. Rates of intracranial venous thrombosis (ICVT) and of thrombocytopenia in adults aged <70 years were higher 1 to 28 days after ChAdOx1-S (aHRs 2.27, 95% CI: 1.33 to 3.88 and 1.71, 1.35 to 2.16, respectively), but not after BNT162b2 (0.59, 0.24 to 1.45 and 1.00, 0.75 to 1.34) compared with unvaccinated. The corresponding absolute excess risks of ICVT 1 to 28 days after ChAdOx1-S were 0.9 to 3 per million, varying by age and sex. The main limitations of the study are as follows: (i) it relies on the accuracy of coded healthcare data to identify exposures, covariates, and outcomes; (ii) the use of primary reason for hospital admission to measure outcome, which improves the positive predictive value but may lead to an underestimation of incidence; and (iii) potential unmeasured confounding. CONCLUSIONS: In this study, we observed increases in rates of ICVT and thrombocytopenia after ChAdOx1-S vaccination in adults aged <70 years that were small compared with its effect in reducing COVID-19 morbidity and mortality, although more precise estimates for adults aged <40 years are needed. For people aged ≥70 years, rates of arterial or venous thrombotic events were generally lower after either vaccine compared with unvaccinated, suggesting that either vaccine is suitable in this age group.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , ChAdOx1 nCoV-19/adverse effects , Thrombocytopenia/etiology , Vaccination , Adult , Aged , Cohort Studies , England/epidemiology , Female , Humans , Incidence , Male , Middle Aged , SARS-CoV-2/pathogenicity , Thrombocytopenia/epidemiology , Vaccination/adverse effects
3.
BMJ ; 373: n826, 2021 04 07.
Article in English | MEDLINE | ID: covidwho-1172748

ABSTRACT

OBJECTIVE: To describe a novel England-wide electronic health record (EHR) resource enabling whole population research on covid-19 and cardiovascular disease while ensuring data security and privacy and maintaining public trust. DESIGN: Data resource comprising linked person level records from national healthcare settings for the English population, accessible within NHS Digital's new trusted research environment. SETTING: EHRs from primary care, hospital episodes, death registry, covid-19 laboratory test results, and community dispensing data, with further enrichment planned from specialist intensive care, cardiovascular, and covid-19 vaccination data. PARTICIPANTS: 54.4 million people alive on 1 January 2020 and registered with an NHS general practitioner in England. MAIN MEASURES OF INTEREST: Confirmed and suspected covid-19 diagnoses, exemplar cardiovascular conditions (incident stroke or transient ischaemic attack and incident myocardial infarction) and all cause mortality between 1 January and 31 October 2020. RESULTS: The linked cohort includes more than 96% of the English population. By combining person level data across national healthcare settings, data on age, sex, and ethnicity are complete for around 95% of the population. Among 53.3 million people with no previous diagnosis of stroke or transient ischaemic attack, 98 721 had a first ever incident stroke or transient ischaemic attack between 1 January and 31 October 2020, of which 30% were recorded only in primary care and 4% only in death registry records. Among 53.2 million people with no previous diagnosis of myocardial infarction, 62 966 had an incident myocardial infarction during follow-up, of which 8% were recorded only in primary care and 12% only in death registry records. A total of 959 470 people had a confirmed or suspected covid-19 diagnosis (714 162 in primary care data, 126 349 in hospital admission records, 776 503 in covid-19 laboratory test data, and 50 504 in death registry records). Although 58% of these were recorded in both primary care and covid-19 laboratory test data, 15% and 18%, respectively, were recorded in only one. CONCLUSIONS: This population-wide resource shows the importance of linking person level data across health settings to maximise completeness of key characteristics and to ascertain cardiovascular events and covid-19 diagnoses. Although this resource was initially established to support research on covid-19 and cardiovascular disease to benefit clinical care and public health and to inform healthcare policy, it can broaden further to enable a wide range of research.


Subject(s)
COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Electronic Health Records , Medical Record Linkage , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines , Cardiovascular Diseases/diagnosis , Child , Child, Preschool , Cohort Studies , England/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Male , Middle Aged , Primary Health Care/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL